Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.995
Filtrar
1.
N Engl J Med ; 389(9): 808-819, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646678

RESUMO

BACKGROUND: Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS: We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS: P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS: Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).


Assuntos
Anticorpos Antivirais , Detecção Precoce de Câncer , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Virais , Humanos , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Herpesvirus Humano 4/imunologia , Imunoglobulina A , Programas de Rastreamento , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Estudos Prospectivos , Estudos Retrospectivos , Biomarcadores/análise , Proteínas Virais/imunologia , Epitopos/imunologia
2.
J Biol Chem ; 299(6): 104767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142221

RESUMO

African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Formação de Anticorpos/imunologia , Deleção de Genes , NF-kappa B/genética , Suínos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral/imunologia
3.
Nat Commun ; 14(1): 2898, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217469

RESUMO

The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.


Assuntos
Células Dendríticas , Nucleotidiltransferases , Vírus Vaccinia , Proteínas Virais , Camundongos Endogâmicos C57BL , Animais , Camundongos , Camundongos Knockout , Feminino , Nucleotidiltransferases/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Vírus Vaccinia/patogenicidade , Fatores de Virulência/imunologia , Ubiquitinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Complexo de Endopeptidases do Proteassoma , Interferon Tipo I/imunologia , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Linfócitos T/imunologia
4.
Open Vet J ; 13(3): 358-364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37026062

RESUMO

Background: African Swine Fever (ASF) is an infectious disease that affects domestic pig and wild boar populations. The ASF Virus (ASFV) has a genome characterized by a very complex DNA (170-193 kb) that encodes for more than 200 different proteins. Among these, the highly immunogenic phosphoprotein p30 plays a fundamental role in the induction of specific antibodies. To date, the lack of a vaccine against the disease requires continuous studies to improve knowledge about the virus and the development of new tests in addition to virological ones. Aim: The aim of this work was to produce specific monoclonal antibodies (mAbs) against the p30 protein of ASFV, which could find useful applications in routine diagnostics and the implementation of new diagnostic tools. Methods: ASFV p30 encoding gene was amplified and used for the generation of the recombinant baculovirus by transfection of the Sf21 insect cells. The recombinant protein was analyzed by immunofluorescence assay, purified, and used for mice Balb-c immunization. The hybridomas obtained were cultured and screened, using an indirect Enzyme-linked Immunosorbent Assay (iELISA), in order to select clones that secrete the mAbs of interest. Results: The expression of recombinant p30 protein was assessed using direct immunofluorescence. The purified p30 protein fractions were analyzed by Coomassie gels staining confirming the presence of bands with a molecular weight of 30 kDa and used for the immunization of Balb-c mice. Six clones of pure hybridomas secreting the specific mAbs against recombinant p30 were obtained and tested in iELISA. The mAbs were also characterized by Western blot and immunofluorescence assay. The best results were obtained with the anti-p30 mAb 2B8E10 clone which showed high reactivity with both recombinant and viral p30 protein, respectively. Conclusion: In this work, a recombinant p30 protein produced in an insect cell system was purified and used to immunize Balb-c mice. Six anti-p30 mAbs-secreting hybridomas clone cells were obtained. These mAbs displayed high reactivity against the recombinant protein, but only 2B8E10 mAb showed excellent functionality against the p30 protein produced by ASFV. These results open the possibility to develop different diagnostic assays.


Assuntos
Anticorpos Monoclonais , Fosfoproteínas , Proteínas Virais , Anticorpos Monoclonais/imunologia , Proteínas Recombinantes/imunologia , Febre Suína Africana , Camundongos Endogâmicos BALB C , Camundongos , Animais , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Baculoviridae , Células Sf9 , Spodoptera , Feminino
5.
Int J Biol Macromol ; 242(Pt 1): 124567, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100320

RESUMO

The non-virion (NV) protein is the signature of genus Novirhabdovirus, which has been of considerable concern due to its potential role in viral pathogenicity. However, its expression characteristics and induced immune response remain limited. In the present work, it was demonstrated that Hirame novirhabdovirus (HIRRV) NV protein was only detected in the viral infected hirame natural embryo (HINAE) cells, but absent in the purified virions. Results showed that the transcription of NV gene could be stably detected in HIRRV-infected HINAE cells at 12 h post infection (hpi) and then reached the peak at 72 hpi. A similar expression trend of NV gene was also found in HIRRV-infected flounders. Subcellular localization analysis further exhibited that HIRRV-NV protein was predominantly localized in the cytoplasm. To elucidate the biological function of HIRRV-NV protein, NV eukaryotic plasmid was transfected into HINAE cells for RNA-seq. Compared to empty plasmid group, some key genes in RLR signaling pathway were significantly downregulated in NV-overexpressed HINAE cells, indicating that RLR signaling pathway was inhibited by HIRRV-NV protein. The interferon-associated genes were also significantly suppressed upon transfection of NV gene. This research would improve our understanding of expression characteristics and biological function of NV protein during HIRRV infection process.


Assuntos
Doenças dos Peixes , Linguado , Novirhabdovirus , Infecções por Rhabdoviridae , Proteínas Virais , Transfecção , Novirhabdovirus/genética , Novirhabdovirus/imunologia , Novirhabdovirus/patogenicidade , Linguado/imunologia , Linguado/virologia , Animais , Embrião não Mamífero , Proteínas Virais/genética , Proteínas Virais/imunologia , Imunidade Ativa , Células Cultivadas , Vetores Genéticos , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica/imunologia
6.
J Virol ; 97(4): e0186422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976017

RESUMO

The monoclonal antibodies (MAbs) NCI05 and NCI09, isolated from a vaccinated macaque that was protected from multiple simian immunodeficiency virus (SIV) challenges, both target an overlapping, conformationally dynamic epitope in SIV envelope variable region 2 (V2). Here, we show that NCI05 recognizes a CH59-like coil/helical epitope, whereas NCI09 recognizes a ß-hairpin linear epitope. In vitro, NCI05 and, to a lesser extent, NCI09 mediate the killing of SIV-infected cells in a CD4-dependent manner. Compared to NCI05, NCI09 mediates higher titers of antibody-dependent cellular cytotoxicity (ADCC) to gp120-coated cells, as well as higher levels of trogocytosis, a monocyte function that contributes to immune evasion. We also found that passive administration of NCI05 or NCI09 to macaques did not affect the risk of SIVmac251 acquisition compared to controls, demonstrating that these anti-V2 antibodies alone are not protective. However, NCI05 but not NCI09 mucosal levels strongly correlated with delayed SIVmac251 acquisition, and functional and structural data suggest that NCI05 targets a transient state of the viral spike apex that is partially opened, compared to its prefusion-closed conformation. IMPORTANCE Studies suggest that the protection against SIV/simian-human immunodeficiency virus (SHIV) acquisition afforded by the SIV/HIV V1 deletion-containing envelope immunogens, delivered by the DNA/ALVAC vaccine platform, requires multiple innate and adaptive host responses. Anti-inflammatory macrophages and tolerogenic dendritic cells (DC-10), together with CD14+ efferocytes, are consistently found to correlate with a vaccine-induced decrease in the risk of SIV/SHIV acquisition. Similarly, V2-specific antibody responses mediating ADCC, Th1 and Th2 cells expressing no or low levels of CCR5, and envelope-specific NKp44+ cells producing interleukin 17 (IL-17) also are reproducible correlates of decreased risk of virus acquisition. We focused on the function and the antiviral potential of two monoclonal antibodies (NCI05 and NCI09) isolated from vaccinated animals that differ in antiviral function in vitro and recognize V2 in a linear (NCI09) or coil/helical (NCI05) conformation. We demonstrate that NCI05, but not NCI09, delays SIVmac251 acquisition, highlighting the complexity of antibody responses to V2.


Assuntos
Anticorpos Monoclonais , Vírus da Imunodeficiência Símia , Proteínas Virais , Vírus da Imunodeficiência Símia/imunologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Epitopos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Estrutura Terciária de Proteína , Modelos Moleculares , Células CHO , Cricetulus , Animais , Macaca/imunologia , Macaca/virologia , Anticorpos Antivirais/sangue
7.
J Virol ; 97(2): e0160022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36757205

RESUMO

Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.


Assuntos
Anticorpos Neutralizantes , Herpesvirus Humano 8 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Infecções por Herpesviridae , Herpesvirus Humano 8/imunologia , Fases de Leitura Aberta/imunologia , Vacinação , Proteínas Virais/imunologia
8.
J Virol ; 97(2): e0192322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779759

RESUMO

African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-ß promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.


Assuntos
Vírus da Febre Suína Africana , Interferon Tipo I , Proteínas Virais , Animais , Febre Suína Africana , Vírus da Febre Suína Africana/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Nucleotidiltransferases/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia
9.
J Virol ; 97(3): e0197722, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815839

RESUMO

African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-ß)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-ß, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-ß signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-ß. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Replicação Viral , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Imunidade Inata , Interferon Tipo I/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Transdução de Sinais , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral/fisiologia , Transporte Ativo do Núcleo Celular/genética , Evasão da Resposta Imune/genética
10.
J Virol ; 97(2): e0189022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688652

RESUMO

Roseoloviruses (human herpesvirus 6A [HHV-6A], -6B, and -7) infect >90% of the human population during early childhood and are thought to remain latent or persistent throughout the life of the host. As such, these viruses are among the most pervasive and stealthy of all viruses; they must necessarily excel at escaping immune detection throughout the life of the host, and yet, very little is known about how these viruses so successfully escape host defenses. Here, we characterize the expression, trafficking, and posttranslational modifications of the HHV6B U20 gene product, which is encoded within a block of genes unique to the roseoloviruses. HHV-6B U20 trafficked slowly through the secretory system, receiving several posttranslational modifications to its N-linked glycans, indicative of surface-expressed glycoproteins, and eventually reaching the cell surface before being internalized. Interestingly, U20 is also phosphorylated on at least one Ser, Thr, or Tyr residue. These results provide a framework to understand the role(s) of U20 in evading host defenses. IMPORTANCE The roseolovirus U20 proteins are virus-encoded integral membrane glycoproteins possessing class I major histocompatibility complex (MHC)-like folds. Surprisingly, although U20 proteins from HHV-6A and -6B share 92% identity, recent studies ascribe different functions to HHV6A U20 and HHV6B U20. HHV6A U20 was shown to downregulate NKG2D ligands, while HHV6B U20 was shown to inhibit tumor necrosis factor alpha (TNF-α)-induced apoptosis during nonproductive infection with HHV6B (E. Kofod-Olsen, K. Ross-Hansen, M. H. Schleimann, D. K. Jensen, et al., J Virol 86:11483-11492, 2012, https://doi.org/10.1128/jvi.00847-12; A. E. Chaouat, B. Seliger, O. Mandelboim, D. Schmiedel, Front Immunol 12:714799, 2021, https://doi.org/10.3389/fimmu.2021.714799). Here, we have performed cell biological and biochemical characterization of the trafficking, glycosylation, and posttranslational modifications occurring on HHV6B U20.


Assuntos
Glicoproteínas de Membrana , Infecções por Roseolovirus , Proteínas Virais , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Evasão da Resposta Imune
11.
J Virol ; 97(1): e0190022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602367

RESUMO

Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais/imunologia
12.
Int Immunol ; 35(5): 243-253, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36591893

RESUMO

Immunogenicity can be evaluated by detecting antibodies (Abs) induced by an antigen. Presently deployed assays, however, do not consider the negative impacts of Ab poly-specificity, which is well established at the monoclonal antibody level. Here, we studied antibody poly-specificity at the serum level (i.e. nonspecific Ab-probe interactions, NSIs), and ended up establishing a new platform for viral peptide immunogenicity evaluation. We first selected three peptides of high, medium and low immunogenicity, using a 'vaccine serum response rate'-based approach (i.e. the gold standard). These three peptides (Pi) in the bovine serum albumin-Pi form were used to immunize chickens, resulting in longitudinal serum samples for screening with a non-cognate peptide library. The signal intensity of Ab-peptide specific binding and 'NSI count' was used to evaluate the viral peptides' immunogenicity. Only the NSI count agreed with the gold standard. The NSI count also provides more informative data on antibody production than the aggregated signal intensity by whole-protein-based indirect enzyme-linked immunosorbent assay.


Assuntos
Especificidade de Anticorpos , Imunoglobulinas , Peptídeos , Proteínas Virais , Biblioteca de Peptídeos , Imunoglobulinas/sangue , Animais , Galinhas , Vírus da Doença de Newcastle/imunologia , Peptídeos/imunologia , Ensaio de Imunoadsorção Enzimática , Formação de Anticorpos , Proteínas Virais/imunologia
13.
Mol Cell ; 83(3): 481-495, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334591

RESUMO

Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.


Assuntos
COVID-19 , Biossíntese de Proteínas , Viroses , Vírus , Humanos , COVID-19/genética , COVID-19/imunologia , Pandemias , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , RNA Viral/genética , RNA Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Viroses/genética , Viroses/imunologia , Vírus/genética , Vírus/imunologia , Ribossomos/genética , Ribossomos/imunologia , Ribossomos/virologia
14.
J Virol ; 96(24): e0115822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453884

RESUMO

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination. However, a proteomic comparison of the Bartha virion to wild-type (WT) PRV virions is lacking. Here, we present a comprehensive mass spectrometry-based proteome comparison of the attenuated Bartha strain and three commonly used WT PRV strains: Becker, Kaplan, and NIA3. We report the detection of 40 structural and 14 presumed nonstructural proteins through a combination of data-dependent and data-independent acquisition. Interstrain comparisons revealed that packaging of the capsid and most envelope proteins is largely comparable in-between all four strains, except for the envelope protein pUL56, which is less abundant in Bartha virions. However, distinct differences were noted for several tegument proteins. Most strikingly, we noted a severely reduced incorporation of the tegument proteins IE180, VP11/12, pUS3, VP22, pUL41, pUS1, and pUL40 in Bartha virions. Moreover, and likely as a consequence, we also observed that Bartha virions are on average smaller and more icosahedral compared to WT virions. Finally, we detected at least 28 host proteins that were previously described in PRV virions and noticed considerable strain-specific differences with regard to host proteins, arguing that the potential role of packaged host proteins in PRV replication and spread should be further explored. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha-an attenuated strain created by serial passaging-represents an exceptional success story in alphaherpesvirus vaccination. Here, we used mass spectrometry to analyze the Bartha virion composition in comparison to three established WT PRV strains. Many viral tegument proteins that are considered nonessential for viral morphogenesis were drastically less abundant in Bartha virions compared to WT virions. Interestingly, many of the proteins that are less incorporated in Bartha participate in immune evasion strategies of alphaherpesviruses. In addition, we observed a reduced size and more icosahedral morphology of the Bartha virions compared to WT PRV. Given that the Bartha vaccine strain elicits potent immune responses, our findings here suggest that differences in protein packaging may contribute to its immunogenicity. Further exploration of these observations could aid the development of efficacious vaccines against other alphaherpesvirus vaccines such as HSV-1/2 or EHV-1.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Animais , Capsídeo/metabolismo , Herpesvirus Suídeo 1/metabolismo , Proteômica , Pseudorraiva/prevenção & controle , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Proteínas Virais/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
15.
Vet Microbiol ; 275: 109593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323175

RESUMO

Porcine sapelovirus (PSV) is an important emerging swine pathogen that causes diarrhoea, respiratory distress, severe reproductive system and neurological disorders in pigs, posing huge threat to swine industry. However, there are no effective serological diagnostic products and the epitope characterization of PSV VP1 protein is still largely unknown. In current study, we successfully expressed recombinant His-VP1 protein by prokaryotic expression system and the recombinant VP1 protein had good immunogenicity. BALB/C mice were then selected and immunized with purified recombinant VP1 protein, and two monoclonal antibodies (Mabs) 9F10 and 15E4 against VP1 were successfully prepared by hybrioma technology. The isotype of these two Mabs were identified and showed that Mab 9F10 with the heavy chain subtype was IgG1 and the light chain subtype was kappa. Mab 15E4 was identified as IgG2 for the heavy chain subtype and Kappa for the light chain subtype. The antigen epitopes of prepared two VP1 Mabs were clearly identified. The minimal unit of B cell specific epitope recognized by Mab 15E4 was 203YDGDG207 and conserved in different strain genotypes of PSV, indicating this epitope may be a good target for serological detection of PSV. However, the epitope recognized by Mab 9F10 was 8QAIVNRT14 and varied greatly among different PSV strains. Structural modeling analysis showed that the identified two novel B cell epitopes were located on the surface of VP1. Our study provides useful tool for the establishment the serological detection methods of PSV and may support the study of VP1 protein function.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos de Linfócito B , Picornaviridae , Proteínas Virais , Animais , Camundongos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Imunoglobulina G , Camundongos Endogâmicos BALB C , Picornaviridae/imunologia , Suínos , Proteínas Virais/imunologia
16.
Science ; 378(6616): 128-131, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227990

RESUMO

SARS-CoV-2 wields versatile proteins to foil our immune system's counterattack.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Proteínas Virais/imunologia
17.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136978

RESUMO

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , COVID-19 , Antígenos de Histocompatibilidade Classe I , Proteínas Virais , Aminoácidos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos , SARS-CoV-2 , Proteínas Virais/imunologia
18.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
19.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917353

RESUMO

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virais , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Microscopia Crioeletrônica , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4/imunologia , Humanos , Fusão de Membrana , Camundongos , Proteínas Virais/imunologia
20.
Proc Natl Acad Sci U S A ; 119(32): e2205797119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914171

RESUMO

Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (∼11%) versus pHA273-287 or NP17-31 antigens (∼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αß sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Narcolepsia , Orexinas , Receptores de Antígenos de Linfócitos T , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana , Narcolepsia/imunologia , Narcolepsia/fisiopatologia , Orexinas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...